Publications

(2022). DecGNN: a framework for mapping decoupled GNN models onto CPU-FPGA heterogeneous platform. ACM/FPGA (poster).

Cite DOI

(2021). Decoupling the depth and scope of Graph Neural Networks. NeurIPS.

PDF Cite Code Poster Slides

(2021). Accelerating large scale real-time GNN inference using channel pruning. VLDB.

PDF Cite DOI

(2021). Accurate, efficient and scalable training of Graph Neural Networks. JPDC.

PDF Cite DOI

(2020). Hardware acceleration of large scale GCN inference. IEEE/ASAP.

Cite DOI

(2020). VTR 8: High-performance CAD and customizable FPGA architecture modelling. ACM/TRETS.

Cite Code

(2020). Accelerating large scale GCN inference on FPGA. IEEE/FCCM (poster).

Cite DOI

(2020). GraphSAINT: Graph sampling based inductive learning method. ICLR.

PDF Cite Code Slides

(2019). SPEC2: Spectral sparse CNN accelerator on FPGAs. IEEE/HiPC.

Cite DOI

(2019). A flexible design automation tool for accelerating quantized spectral CNNs. IEEE/FPL.

Cite DOI

(2019). Accurate, efficient and scalable graph embedding. IEEE/IPDPS.

PDF Cite DOI

(2018). Throughput-optimized frequency domain CNN with fixed-point quantization on FPGA. IEEE/ReConFig.

Cite DOI

(2018). A fast and efficient parallel algorithm for pruned landmark labeling. IEEE/HPEC.

Cite DOI

(2018). An FPGA framework for edge-centric graph processing. ACM/CF.

Cite DOI

(2018). A framework for generating high throughput CNN implementations on FPGAs. ACM/FPGA.

Cite DOI

(2017). Fast generation of high throughput customized deep learning accelerators on FPGAs. IEEE/ReConFig.

Cite DOI

(2017). Quickly finding a truss in a haystack. IEEE/HPEC.

Cite DOI

(2017). Design and implementation of parallel PageRank on multicore platforms. IEEE/HPEC.

Cite DOI