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Graph representation learning & GNNs

Message passing in GNNs
• Scope: from what neighbors?
• Depth: by how many layers?
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GNN designs by default
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Intuitions
• Some neighbors are irrelevant à No need to pass their messages
• Some neighbors are important à Worth passing their messages many times
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Theoretical Justifications

Decoupling improves GNN scalability
• Deep model + Large graph ≠ Exploding scope
• With fixed-size scope, complexity is linear with the model depth

Decoupling improves GNN expressivity
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Graph signal processing perspective

Decoupled-GCN addressed oversmoothing of original GCN
• ∞ layers: different scope of different target nodes à distinctive embeddings

Function approximation perspective

Decoupled-SAGE is more expressive than GraphSAGE
• Consider neighborhood 𝒢′ & function 𝜏 for linear combination of 𝒢′ features
• Decoupled-SAGE can approximate 𝜏 where
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Algorithm: Generate embedding for a target node 𝑣 of the full graph 𝒢

1. Extract a subgraph 𝒢[!] around 𝑣
2. for round 𝑖 = 1 to 𝐿′:

Perform message passing along all edges in 𝒢 !
3.Take 𝑣’s embedding from all node embeddings of 𝒢 !

Topology learning perspective

Decoupled-GIN is more expressive than original GIN / 1-WL
• Non-isomorphic regular graphs: subgraphs of a regular graph is not regular

Scope = 1-hop

Depth = 2

• Decoupling improves accuracy & reduces cost by orders of magnitude
• Subgraph EXTRACT functions are critical
• Scalable to production-scale graphs with low-end server configurations

Baseline comparisons

Neighborhood composition Scaling to 100M-node graph
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