Decoupling the Depth and Scope of Graph Neural Networks

https://github.com/facebookresearch/shadow_GNN

Background & Challenges

Graph representation learning & GNNs

Decoupling Design Principle

Intuitions

- Some neighbors are irrelevant \rightarrow No need to pass their messages
- Some neighbors are important \rightarrow Worth passing their messages many times

Alternative view on the input graph

Algorithm: Generate embedding for a target node v of the full graph G

1. Extract a subgraph $\mathcal{G}_{[v]}$ around v2. for round i = 1 to L': Perform message passing along all edges in $\mathcal{G}_{[v]}$ 3. Take v's embedding from all node embeddings of $\mathcal{G}_{[v]}$

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, Ren Chen

Theoretical Justifications

Decoupling improves GNN scalability

- Deep model + Large graph \neq Exploding scope
- With fixed-size scope, complexity is linear with the model depth

Decoupling improves GNN expressivity

Graph signal processing perspective

Decoupled-GCN addressed oversmoothing of original GCN

• ∞ layers: different scope of different target nodes \rightarrow distinctive embeddings

Function approximation perspective

Decoupled-SAGE is more expressive than GraphSAGE

- Consider neighborhood G' & function τ for linear combination of G' features Decoupled-SAGE can approximate τ where

Topology learning perspective

Decoupled-GIN is more expressive than original GIN / 1-WL

• Non-isomorphic regular graphs: <u>subgraphs of a regular graph is not regular</u>

Architecture: shaDow-GNN

Evaluation

- Decoupling improves accuracy & reduces cost by orders of magnitude
- Subgraph EXTRACT functions are critical
- Scalable to production-scale graphs with low-end server configurations

Neighborhood composition

4-layer GNN *L*-layer SHADOW (PPR) Flick Reddi Yel arxi oduct rs100 'lick eddi Yel arxi duct

Scaling to 100M-node graph

Table 2: Leaderboard comparison on papers100									
Method	Test accuracy	Val accuracy	Neigh size						
GraphSAGE+incep SIGN-XL SGC	$\begin{array}{c} 0.6707 {\pm} 0.0017 \\ 0.6606 {\pm} 0.0019 \\ 0.6329 {\pm} 0.0019 \end{array}$	$\begin{array}{c} 0.7032{\pm}0.0011\\ 0.6984{\pm}0.0006\\ 0.6648{\pm}0.0020\end{array}$	4E5 > 4E5 > 4E5						
SHADOW-GAT ₂₀₀ ShaDow-GAT ₄₀₀	0.6681±0.0016 0.6710±0.0015	0.7019±0.0011 0.7067±0.0012	2E2 3E2						

Baseline comparisons

Method	Layers	Flickr		Reddit		Yelp		ogbn-arxiv		ogbn-products	
		Accuracy	Cost	Accuracy	Cost	F1-micro	Cost	Accuracy	Cost	Accuracy	Cost
GCN GCN + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5159 {\pm} 0.0017 \\ 0.5217 {\pm} 0.0016 \\ 0.5155 {\pm} 0.0027 \\ 0.5165 {\pm} 0.0026 \end{array}$	2E0 2E2 2E0 2E2	$\begin{array}{c} 0.9532 {\pm} 0.0003 \\ 0.9495 {\pm} 0.0012 \\ 0.9523 {\pm} 0.0003 \\ 0.9523 {\pm} 0.0012 \end{array}$	6E1 1E3 6E1 1E3	$\begin{array}{c} 0.4028 {\pm} 0.0019 \\ OOM \\ 0.5110 {\pm} 0.0012 \\ 0.5012 {\pm} 0.0021 \end{array}$	2E1 1E3 2E1 1E3	$\begin{array}{c} 0.7170 {\pm} 0.0026 \\ 0.7186 {\pm} 0.0017 \\ 0.7093 {\pm} 0.0003 \\ 0.7039 {\pm} 0.0020 \end{array}$	1E1 1E3 1E1 1E3	$\begin{array}{c} 0.7567 {\pm} 0.0018 \\ OOM \\ 0.8003 {\pm} 0.0024 \\ 0.7992 {\pm} 0.0021 \end{array}$	5E0 9E2 5E0 9E2
SHADOW-GCN +PPR	3 5	0.5262±0.0018 0.5270±0.0024	(1) 1E0	$\begin{array}{c} 0.9581 {\pm} 0.0004 \\ 0.9583 {\pm} 0.0002 \end{array}$	(1) 1E0	0.5255±0.0012 0.5272±0.0018	(1) 2E0	$\begin{array}{c} 0.7192{\pm}0.0025\\ \textbf{0.7207}{\pm}0.0030 \end{array}$	(1) 2E0	$\begin{array}{c} 0.7778 {\pm} 0.0030 \\ 0.7844 {\pm} 0.0029 \end{array}$	(1) 2E0
GraphSAGE GraphSAGE + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5140 {\pm} 0.0014 \\ 0.5154 {\pm} 0.0052 \\ 0.5176 {\pm} 0.0032 \\ 0.5201 {\pm} 0.0032 \end{array}$	3E0 2E2 3E0 2E2	$\begin{array}{c} 0.9653 {\pm} 0.0002 \\ 0.9626 {\pm} 0.0004 \\ 0.9671 {\pm} 0.0003 \\ 0.9670 {\pm} 0.0010 \end{array}$	5E1 1E3 5E1 1E3	$\begin{array}{c} 0.6178 {\pm} 0.0033 \\ OOM \\ 0.6453 {\pm} 0.0011 \\ 0.6394 {\pm} 0.0003 \end{array}$	2E1 2E3 2E1 2E3	$\begin{array}{c} 0.7192 {\pm} 0.0027 \\ 0.7193 {\pm} 0.0037 \\ 0.7107 {\pm} 0.0003 \\ 0.7013 {\pm} 0.0021 \end{array}$	1E1 1E3 1E1 1E3	$\begin{array}{c} 0.7858 {\pm} 0.0013 \\ OOM \\ 0.7923 {\pm} 0.0023 \\ 0.7964 {\pm} 0.0022 \end{array}$	4E0 1E3 4E0 1E3
SHADOW-SAGE + 2-hop SHADOW-SAGE + PPR	3 5 3 5	$\begin{array}{c} 0.5288 {\pm} 0.0014 \\ 0.5338 {\pm} 0.0038 \\ 0.5344 {\pm} 0.0028 \\ \textbf{0.5424} {\pm} 0.0025 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} 0.9660 {\pm} 0.0003 \\ 0.9661 {\pm} 0.0002 \\ \textbf{0.9693} {\pm} 0.0002 \\ 0.9691 {\pm} 0.0003 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} 0.6493 {\pm} 0.0001 \\ 0.6503 {\pm} 0.0001 \\ \textbf{0.6512} {\pm} 0.0002 \\ 0.6502 {\pm} 0.0001 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} 0.7163 {\pm} 0.0012 \\ 0.7183 {\pm} 0.0012 \\ 0.7234 {\pm} 0.0032 \\ \textbf{0.7255} {\pm} 0.0013 \end{array}$	1E0 2E0 (1) 2E0	$\begin{array}{c} 0.7993 {\pm} 0.0012 \\ 0.8014 {\pm} 0.0020 \\ 0.7945 {\pm} 0.0021 \\ \textbf{0.8043} {\pm} 0.0026 \end{array}$	1E0 2E0 (1) 2E0
GAT GAT + GraphSAINT-RW	3 5 3 5	$\begin{array}{c} 0.5070 {\pm} 0.0032 \\ 0.5164 {\pm} 0.0033 \\ 0.5225 {\pm} 0.0053 \\ 0.5153 {\pm} 0.0034 \end{array}$	2E1 2E2 2E1 2E2	$\begin{array}{c} \text{OOM} \\ \text{OOM} \\ 0.9671 {\pm} 0.0003 \\ 0.9651 {\pm} 0.0024 \end{array}$	3E2 2E3 3E2 2E3	$\begin{array}{c} \text{OOM} \\ \text{OOM} \\ 0.6459 {\pm} 0.0002 \\ 0.6478 {\pm} 0.0012 \end{array}$	2E2 2E3 2E2 2E3	$\begin{array}{c} 0.7201 {\pm} 0.0011 \\ OOM \\ 0.6977 {\pm} 0.0003 \\ 0.6954 {\pm} 0.0013 \end{array}$	1E2 3E3 1E2 3E3	$\begin{array}{c} \text{OOM} \\ \text{OOM} \\ 0.8027 {\pm} 0.0028 \\ 0.7990 {\pm} 0.0072 \end{array}$	3E1 2E3 3E1 2E3
SHADOW-GAT + PPR	3 5	$\begin{array}{c} \textbf{0.5383} {\pm} 0.0032 \\ \textbf{0.5342} {\pm} 0.0023 \end{array}$	(1) 2E0	$\begin{array}{c} 0.9703 {\pm} 0.0010 \\ \textbf{0.9710} {\pm} 0.0008 \end{array}$	(1) 2E0	0.6549±0.0002 0.6537±0.0004	(1) 2E0	$\begin{array}{c} 0.7243 {\pm} 0.0011 \\ \textbf{0.7283} {\pm} 0.0027 \end{array}$	(1) 2E0	$\begin{array}{c} \textbf{0.8014} {\pm} 0.0012 \\ \textbf{0.8094} {\pm} 0.0034 \end{array}$	(1) 2E0