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Background: Graph Neural Networks

Graph representation learning
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Message passing in GNNs

• Scope: from what neighbors?

• Depth: by how many iterations / layers?

e.g., billion scale 
social network



Scalability & Expressivity Challenges

GNN designs by default (on large scale graphs):
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Increasing the depth
(𝐿-layer GNN)

Expanding the scope
(𝐿-hop neighborhood)

Neighborhood 
explosion
~𝑑𝐿

Dilemma in deep GNN: scalability-expressivity tradeoff
• Depth is important: Experience from general deep learning

• Depth is expensive: Observation from graph message passing

• Depth can cause training challenges: Oversmoothing in GCN

Solution: Don’t forget the scope!



Depth-Scope Decoupling

Define scope independent of depth

• Intuitions
• Some neighbors are irrelevant → no need to pass their messages

• Some neighbors are extra important → worth passing their messages many times

• Example: Deep (𝐿′-layer) GNN on shallow (𝐿-hop) subgraph, 𝐿′ > 𝐿
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1. Extract a subgraph 𝒢[𝑣] around 𝑣

2. for round 𝑖 = 1 to 𝐿′:
Perform message passing along all edges in 𝒢 𝑣

3. Take 𝑣’s embedding from all node embeddings of 𝒢 𝑣

Algorithm: generate embedding for a target node 𝑣 of the full graph 𝒢



Depth-Scope Decoupling

Interpretation
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is a property of the
Scope

Depth

Data

Model

Observed large graph

Union of latent small graphs

Alternative view on the input graph

Enlarging the GNN design space

…



Theoretical Justifications: Overview

Decoupling improves GNN expressive power, from the perspectives of

• Graph signal processing: decoupled-GCN avoids oversmoothing

• Function approximator: decoupled-SAGE learns target function better

• Topological information: decoupled-GIN exceeds 1-WL test
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Decoupling improves GNN scalability

• Deep model + Large graph ≠ Exploding scope

• With fixed-size scope, complexity is linear with the model depth



Theoretical Justification: Graph Signal 
Processing Perspective

Oversmoothing of deep GCN

• 1 layer: smoothing of direct neighbors

• Many layers: smoothing within the 
whole connected component (CC)

• ∞ layers: embedding only contains 
global info. of CC → indistinguishable

Local-smoothing of decoupled-GCN

• Scope is fully customized: 𝒢[𝑢] ≠ 𝒢 𝑣

• Many layers: smoothing within target 
node’s own scope

• ∞ layers: different scope →
distinctive embeddings
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Theoretical Justification: Function 
Approximator Perspective
Decoupled-SAGE is more expressive than GraphSAGE

Consider neighborhood 𝒢′ & function 𝜏 for linear comb. of 𝒢′ features

• GraphSAGE cannot approximate 𝜏 well, even if 𝒢′ is 𝐿-hop neighborhood

• Decoupled-SAGE can approximate 𝜏 where
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Scope 𝒢 𝑣 = 𝒢′ Depth reduces the error exponentially

Neighborhood 𝒢′
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Normalized adj. matrix Deep decoupled-SAGE

෡𝑨 =

Markov transition matrix Markov chain convergence theorem

Approximate 𝜏



Theoretical Justification: Topology 
Information Perspective
Decoupled-GIN is more expressive than GIN/1-WL

• Challenge for GIN/1-WL: non-isomorphic regular graphs

• Benefit of decoupling: subgraphs of a regular graph may not be regular

10

Example 3-regular graph where 
GIN cannot distinguish 𝑢 and 𝑣

Decoupled-GIN can distinguish 𝑢 and 𝑣

Scope = 1-hop

Depth = 2



Architecture: Subgraph Extraction

Define scope 𝒢 𝑣 by extracting subgraphs around 𝑣

General approaches to preserve neighborhood characteristics
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1. Compute PPR score with target 𝑣 as the root node
2. Take 𝐵 neighbors 𝒩[𝑣] with top PPR scores

3. Construct node-induced subgraph 𝒢 𝑣 from 𝒩 𝑣

Example heuristic-based extraction function
• Identify important neighbors by Personalized PageRank (PPR) scores

Heuristic based Model based Learning based



Architecture: READOUT & Ensemble

READOUT for node-& link-level tasks

• Two 𝐿-hop neighbors may only talk to 
each other after 2𝐿 layers

• Deep layers on shallow scope: each 
𝒢 𝑣 node sees the complete 𝒢 𝑣 info.

→ READOUT all 𝒢 𝑣 embeddings

Ensemble of different subgraphs

• Different graph metrics captures 
different neighbor importance

• Design a single complicated subgraph 
extraction function?

→ Ensemble simple subgraph extractors
• e.g., [𝐿-hop] + [PPR]
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Architecture: Full Picture
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Evaluation: Setup
Tasks node classification & link prediction
Datasets 7 graphs (up to 111M nodes)

inductive & transductive
Backbone models 5 aggregation functions & residue connection
Training of baselines full batch & GraphSAINT minibatch

Training of proposed minibatch of independently constructed 𝒢 𝑣

Practical design: shaDow-GNN (Decoupled GNN on shallow subgraphs)
• Scope: based on 2-hop / PPR (top 200 nodes)
• Depth: 3- / 5-layer
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Evaluation: Neighborhood Composition

How many neighbors are ℓ hops 
away from the target node?

• Scope of normal GNN
• Dominated by distant neighbors

• Size grows rapidly

• Scope of shaDow-GNN
• Consists of nearby neighbors

• Size is small regardless of number 
of layers (< 200 neighbors)
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Evaluation: Baseline Comparisons

• Decoupling improves 
accuracy at lower 
computation cost

• Decoupling is a 
general design 
principle applicable to 
various backbones

• Subgraph extraction
algorithms are 
important
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Evaluation: Scaling to 100M-Node Graph

OGB leaderboard comparison

• Higher accuracy 

• 3 orders of magnitude smaller 
neighborhood size

Memory consumption

• Lowest in both CPU and GPU

• Train & inference the 100M graph on a 
low-end server
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Conclusion

General design principle to decouple the depth & scope of GNNs

• Theoretical benefits in expressivity & scalability

• Empirical performance gain in accuracy & cost

• Flexibility w.r.t. GNN architecture, subgraph extraction algorithms & learning tasks

Public implementations

• Official code: 

• PyG version: 

• DGL version:

https://github.com/facebookresearch/shaDow_GNN
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https://pytorch-geometric.readthedocs.io/en/latest/modules/loader.html#torch_geometric.loader.ShaDowKHopSampler

https://docs.dgl.ai/en/latest/_modules/dgl/dataloading/shadow.html

https://github.com/facebookresearch/shaDow_GNN


Thank you!


